If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-2017=0
a = 1; b = 1; c = -2017;
Δ = b2-4ac
Δ = 12-4·1·(-2017)
Δ = 8069
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{8069}}{2*1}=\frac{-1-\sqrt{8069}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{8069}}{2*1}=\frac{-1+\sqrt{8069}}{2} $
| 5y-3y-8=26.32 | | -5d=-6-7d | | -1/2x2-4x-8=0 | | 75+-5x=3x+4 | | 7c+10=5c | | F(4)=2+5x | | 15x+16=4x+-7 | | 12x+11=-1x+4 | | Nx1.8=2.4 | | 6x^2+18x-36=0 | | 3x+4x+8x=6x+63 | | x-4=10/2 | | 4(5+2a)=44 | | 3x+.1=7 | | X/2+y/4=7 | | 5x9=-4 | | 40=14n | | 5x=8=20 | | 31.25=v/5 | | 2x^2-64x+252=0 | | 8-9x=15x+7+3x. | | 29=24-x | | 16+3x=4+x | | -8(-x-4)-4=-2(x+1) | | 7w-w-5w=8 | | 7q-6q-q+3q-q=12 | | 4y-3y-y+y=16 | | -11g+3g-13g+18g=18 | | 3(w–7)=12 | | 8s+3s-6s+4s-8s=13 | | 1=r5 | | -5b+6b-2b=-17 |